

REAL-TIME SMOKE SIMULATION WITH ARTSS

Data Assimilation

28.11.2019 | My Linh Würzburger | Civil Safety Research

Member of the Helmholtz Association

Introduction

Research Center Jülich

- Institute: Civil Safety Research
- Division: Fire Dynamics

My Linh Würzburger

- studies: mathematics and software development
- start as PhD student: September 2019
- PhD Project: Data Assimilation in ARTSS

ARTSS

Accelerator-based Real-Time Smoke Simulator

- former name: JuROr (PhD thesis of Anne Küsters)
- open-source software
- release on GitHub at the end of the year/beginning of the 2020

Features

- aim for real-time
- use of graphics board (GPU)
- just smoke, no combustion (yet), radiation or pyrolysis
- "simple" approach

ARTSS

Working with the graphics board

ARTSS Solution process

- read parameters from XML
- set initial conditions
- start time measuring
- set boundary conditions
- start time integration
 - velocity
 - advection, turbulence
 - diffusion, buoyancy as source
 - pressure
 - temperature
 - advection, diffusion
 - heat source
 - update buoyancy
- stop time measuring
- analysis (error, output, visualisation)

FDS

CFD/LES model

turbulent, incompressible fluid dynamics

smoke spread, pyrolysis,	smoke spread
radiation, etc.	

cartesian grids, rectangular objects (FDM)

CPU	CPU + GPU
Fortran/MPI/OpenMP	C++/OpenACC
smokeview	Vislt, Paraview
\sim 115 000 lines of code, open source	~18 000 lines of code, open source
Member of the Helmholtz Association 28.11.2019	Slide 5 Forschungszentrum

ARTSS - Difference to FDS

Steckler Experiment

Fire induced flow experiment in a compartment

ARTSS - Difference to FDS

Steckler Experiment - Benchmarking

- 2-socket Intel Xeon Haswell E5-2680 v3 @ 2.5 GHz and 2 x 12 cores
- NVIDIA Pascal P100 (PCIe) GPU with 1328 MHz, 12 GB, 56 SMs and a 2-socket Intel Xeon Broadwell E5-2623 v4
 @ 2.6 GHz

ARTSS - Difference to FDS

Steckler Experiment - Accuracy

Velocity u in m/s

Vertical velocity (at the top) at the center of the doorway

Temperature profile (at the bottom) at the center of the doorway

150 200 250

Temperature in °C

100

JuROr

Steckler

300

FDS

Member of the Helmholtz Association

2.0

1.5

1.0

0.5

0.0

50

Height above floor in m

Definition data assimilation

Data assimilation is a mathematical discipline that seeks to optimally combine theory (usually in the form of a numerical model) with observations. (taken from wikipedia)

Definition data assimilation

Data assimilation is a mathematical discipline that seeks to optimally combine theory (usually in the form of a numerical model) with observations. (taken from wikipedia)

- initially developed for weather forecast
- meteorological variables (e.g. temperature, atmospheric pressure) as initial conditions
- already used in prediction for wildfires

Definition data assimilation

Data assimilation is a mathematical discipline that seeks to optimally combine theory (usually in the form of a numerical model) with observations. (taken from wikipedia)

- initially developed for weather forecast
- meteorological variables (e.g. temperature, atmospheric pressure) as initial conditions
- already used in prediction for wildfires
- \rightarrow improvement of accuracy through data assimilation

Wolfram Jahn

Jahn, Wolfram & Rein, Guillermo & Torero, Jose. (2009). Data assimilation in enclosure fire dynamics - towards adjoint modelling

Wolfram Jahn - Approach

- comparison parameter
 - temperatures (at walls)
 - heat fluxes
- two stages of fire
 - fuel controlled fire
 - ventilation controlled fire

Data Assimilation in ARTSS

Importance

fundamental (unknown) parameter

- how strong does it burn? (heat release rate)
- where does it burn? (location)
- smoke spread depends on
 - the fuel (eg. furniture)
 - the room structure (eg. door open/closed)
 - the fire protection measurements (eg. sprinkler)

Data Assimilation in ARTSS

Importance

fundamental (unknown) parameter

- how strong does it burn? (heat release rate)
- where does it burn? (location)
- smoke spread depends on
 - the fuel (eg. furniture)
 - the room structure (eg. door open/closed)
 - the fire protection measurements (eg. sprinkler)
- data assimilation can show us
 - if there is a sudden increase/decrease in smoke
 - if there is an underlying stream

Data Assimilation in ARTSS

Importance

fundamental (unknown) parameter

- how strong does it burn? (heat release rate)
- where does it burn? (location)
- smoke spread depends on
 - the fuel (eg. furniture)
 - the room structure (eg. door open/closed)
 - the fire protection measurements (eg. sprinkler)
- data assimilation can show us
 - if there is a sudden increase/decrease in smoke
 - if there is an underlying stream
- $\rightarrow\,$ it may be possible to extend the room-based approach to the whole building

